وبلاگ آرکو فایل اسکای _ دانلود فایل

معرفی و دانلود مقالات ، تحقیقات و پروژه های دانشجویی در تمامی رشته ها

وبلاگ آرکو فایل اسکای _ دانلود فایل

معرفی و دانلود مقالات ، تحقیقات و پروژه های دانشجویی در تمامی رشته ها

تحقیق تاریخچه ریاضیات در چین

نماسازی عددی، محاسبه ریاضی، مقیاسهای شمارش نماد سازی اعشاری سنتی یک نماد برای هر یک از
دسته بندی ریاضی
بازدید ها 23
فرمت فایل doc
حجم فایل 9 کیلو بایت
تعداد صفحات فایل 9
تحقیق تاریخچه ریاضیات در چین

فروشنده فایل

کد کاربری 1024
کاربر

تاریخچه ریاضیات در چین


خلاصه ایی از تاریخ ریاضیات در چین
منابع اولیه عبارتند از: «گسترش ریاضیات در چین و ژاپن» اثر Mikami و ریاضیات چینی اثر Li yan و Dushiran تاریخچه زیر را مشاهده نمائید:
1- نماسازی عددی، محاسبه ریاضی، مقیاسهای شمارش
نماد سازی اعشاری سنتی- یک نماد برای هر یک از 10.9.8.7.6.5.4.3.2.1،100 و 1000 و 10000 و..
بنابراین 2034 نوشته می‌شود با نمادهایی به شکل 2 و 1000و3و10 و4 یعنی دوبار 1000 و 3 بار 10 باضافة 4. که باز می‌گردد به روش نوشتاری چینی.
• محاسبه با استفاده از تکه های کوچک خیزران بعنوان مقیاسهای شمارش شکل گرفت. شکل قرار گرفتن مقیاسهای شمارش نمایانگر یک روش اعشاری ساده بوده و برای نوشتن عبارات طولانی، عدد صفر نمایانگر یک فاصله بود. ترتیب نوشتن از چپ به راست شبیه روش شمارش عربی در 400 سال قبل از میلاد و یا زودتر بوده.
• جمع: نمادهای شمارش برای دو عدد در پائین قرار می گرفتند و یک عدد بالای دیگری اعداد از چپ به راست با هم جمع می شدند و در صورت نیاز انتقال انجام می‌شد. منها نیز به همین روش.
• ضرب: جدول ضرب 90*9 ضربهای اعداد بزرگ مانند روش ما با نتیجه‌گیری بر مبنای مقیاسهای فیزیکی انجام می‌شد. تقسیمهای اعداد بزرگ مانند روشهای رایج ولی نزدیکتر به روش galley بود.
2- Zhoubi suanjing (بهترین روش محاسبة شاخصها و منحنی های صعودی) (صد سال قبل از میلاد مسیح)
• یکی از تئوریهای منحنی های صعودی راتوصیف می‌کند قبل از آن Han dynasty (206 سال قبل از میلاد مسیح) ریاضی زودتر در کتاب سوزی 213 قبل از میلاد مسیح.
• بیان و کاربرد هندسه فیثاغورثی برای مساحی، ستاره شناسی و غیره. گسترش هندسه فیثاغورثی
• محاسباتی شامل اعداد کسری معمولی
3- نه فصل در مورد هنر ریاضی اثر jiuzhang suanshu (صد سال قبل از میلاد مسیح) گرد آوری ریاضیات بر پایه Han dynasty 249 مسئله در 9 فصل.
کاملترین مرجع مساحی و موثرترین کتاب ریاضیات هینی. گزارشات و تفسیر‌های فراوان.
فصل 1: محاسبه مساحت: مباحث سیستماتیک در مورد الگوریتمهای مورد استفاده در شاخصهای شمارش اعداد کسری شامل alg برای LCM , GCD مساحت اشکال سطح شامل مربع، مستطیل. مثلث، ذوذنقه،دایره و قطاع دایره و قطاع کره دوایر متحد المرکز، بعضاً تخمینی و بعضاَ دقیق.
بخشهای 2و3و6 در مورد تناسب، سری ها، توزیع نسبت و ضرایب صحیح بخش 4، روشهای محاسبه سطح و حجم. توضیح روشهای معمول برای محاسبه ریشهای مربع و مکعب می اشد اما نتایج را به کمک محاسبه با نمادهای عددی بدست می آورد.
بخش 5: مشاوره های ساختمانی. حجم مکعب، متوازی السطوح، هرم ناقص هرم سه وجهی، هرم، استوانه، چهارضلعی. مخروط و مخروط ناقص و کره بعضاً تخمینی و بعضاً با 3-Pi
بخش 7: زیادی ها و کسرها: اشکال خطا و اشکال خطا دوگانه.
بخش 8: آرایش مستطیلی: بیان کننده روشهای محاسبه برای حل معادلات 3 مجهولی یا بیشتر. شامل بکارگیری اعداد منفی (مرکز برای اعداد مثبت و سیاه برای اعداد منفی) قواعد اعداد صحیح.
بخش 9: مثلث های کامل: کاربرد تئوری فیثاغورث و مثلث های متشابه، حل معادلات درجه ها با توضیح الگوریتم ریشه مربع، تنها معادلات به شکل X2+ax=b با a و b مثبت
Sunzi 4
روشهای کاربردی ریاضی خود را نوشته. شامل «باقیماندة مسائل چینی» یا «مسئله Master Sun» . n را پیدا کرده وقتی که شما با تقسیم 3 باقیماندة 2 را بدست می‌آورید، با تقسیم بر 5 باقیماندة 3 را بدست می آورید و با تقسیم بر 7 باقیماندة 2 را بدست می آورید. راه حل او: اعاد 40، 63 و 30 را جمع کنید تا به عدد 233 برسید، از عدد 210 کم کنید تا به عدد 23 برسید.


جشنواره تدریس برتر ریاضی (پایه پنجم)

مشخصات نام درس ریاضی ص 9192939495 عنوان درس احجام تعداد دانش آموزان 14 نفر تهیه کننده اعظم قربانی پارام، گروه 12
دسته بندی ریاضی
بازدید ها 15
فرمت فایل doc
حجم فایل 12 کیلو بایت
تعداد صفحات فایل 14
جشنواره تدریس برتر ریاضی (پایه پنجم)

فروشنده فایل

کد کاربری 1024
کاربر

جشنواره تدریس برتر ریاضی (پایه پنجم)


مشخصات:
نام درس: ریاضی ص 91-92-93-94-95
عنوان درس: احجام
تعداد دانش آموزان: 14 نفر
تهیه کننده: اعظم قربانی پارام، گروه 12
روز: تاریخ: /11/84
مدت تدریس: 45 دقیقه اجرا: 25 دقیقه
مقطع: ابتدایی سال تحصیلی 85-84
هدف کلی: دانش آموزان با خصوصیات و ویژگیهای کلی حجم، آشنا شوند.
هدفهای جزئی: «دانستنی ها – مهارتها – نگرش ها»
الف) دانستنی ها – حیطه شناختی
1- دانش آموزان با مفهوم حجم و با شکلها – اندازه ها – و فضاها آشنا شود.
2- دانش آموزان با علم و آگاهی و شناختن علم هندسه و شناخت روابط بین عناصر متفاوتی مثل (زاویه ها – ضلع ها – سطح – حجم) آشنا شود.
3- دانش آموزان با نام و اشکال هندسه ی مسطحه و صاف که دارای دو بعد (طول و عرض می باشد مثل د ایره – مثلث – مربع و ... آشنا شود.
هدفهای جزئی
4- دانش آموزان همچنین با احجام که دارای 3 بعد که شامل (طول و عرض و ارتفاع) می باشد آشنا بشوند.
5- با وسایلی که می توان این اشکال هندسی را شناخت آشنا می شود و کاربرد آنها را در درس و زندگی روزمره می شناسد.
ب) مهارتها
1- دانش آموزان بتوانند شکل احجام را بکشند (حرکتی)
2- دانش آموزان با مفهوم این که این شکلها بر یک صفحه قرار ندارند و دارای گنجایش و حجم نیز می باشند مانند مخروطها – هرمها – استوانه ها
3- دانش آموزان به مفهوم این که به شکلهایی که دارای سقف و ته می باشند و می توانند در فضای داخل خود اشیاء دیگر را که کوچکتر باشند را جا می دهند آشنا می شوند.
4- دانش آموزان به مفهوم این که در احجام به سطحی «قاعده» گفته می شود که در کف یا بالای شکل قرار دارند آشنا می شوند.
5- دانش آموزان بتوانند با مقوا یا کاغذ A4 شکل حجم (مکعب مربع و مستطیل و چند وجهیها) را بسازند. (توان ساخت.)
نگرش ها
1- دانش آموزان به شناختن اشکال هندسی ابراز علاقه می کنند.
2- دانش آموزان به یادگیری شکلها و رسم آنها و ساختن احجام و همچنین تهیه وسایل در گروه ابراز علاقه می کنند.
3- دانش آموزان با علاقه به جمع آوری اطلاعات برای شناختن بقیه ی شکلهای چند بعدی هندسی که در کتاب نیست کوشش می کند.
4- دانش آموزان برای ساختن احجام و کشیدن آنها با کاغذ یا مقوا یا چوب ابراز علاقه می کنند.
هدفهای رفتاری
الف- با ذکر حیطه های شناختی
ب- حیطه های عاطفی
حیطه های حرکتی
1- بتواند شکل آنها را بکشد و نام آنها را بگوید. (شناختی – دانشی)
2- برای رسم شکلها و یا ساختن آنها با کاغذ A4 یا مقوا و ... در گروه شرکت کند و برای ساختن و شناختن حجم شکلها و تهیه وسایل آنها شرکت نماید. (شناختی – دانشی – عاطفی)
3- مفهوم هندسه فضایی یا سه بعدی که دارای 3 بعد – ارتفاع – طول و عرض هستند را بیان کنند. (درک مفهوم)
4- درک مفهوم این شکلها که بر یک صفحه قرار ندارند و دارای گنجایش و حجم نیز می باشند. «مخروطها – هرم ها – کره – استوانه و مکعب ها» را بشناسند و شکل آنها را بکشد یا بسازد.
5- مفهوم این که در احجام قاعده به سطحی گفته می شود که در کف یا بالای شکل قرار دارد را بیان کند.
6- با کمک گروه درک مفهوم این که حجم مکعبی که طول تمام ضلع هایش 1 سانتی متر است بوسیله یک مکعب چوبی یا مقوایی یا کاغذی بیان کنند که آن را بعنوان یک «واحد» اندازه گیری مکعبی معین می نماییم که در زندگی روزمره معمولی بعنوان «حجم» شناخته می شود را بیان نمایند.
7- با کمک افراد گروه بتوانند بیان کنند که ظرفیت و اندازه گیری عملی و علمی با استفاده از واحدهای اندازه گیری مکعبی می باشد که به آن «لیتر» می گویند.
8- با کمک افراد گروه و بوسیله مکعب هایی که خودشان می سازند با کاغذ و چسب درست می کنند (قاعده ها) و سطوح مختلف آن را بیان کنند.
9- درک مفهوم این که چند وجهی ها نیز قسمتی از اشکال فضایی می باشند را بیان کنند.
روشهای یاددهی - یادگیری «روش تدریس»
روش تلفیقی «بحث و گفتگو – سخنرانی – مشارکتی همیاری – با روش ذهنی»
الف) مرحله اول مرحله ی محسوسات «مجسم» با روش آمیخته پرسش و پاسخ – سخنرانی – نمایشی، بارش ذهنی – بحث و گفتگو
در این مرحله کتاب دانش آموزان بسته است.
ب) در مرحله دوم: نیمه محسوسات (نیمه مجسم) بصورت مکاشفه ای و همیاری دانش آموزان
ج) مرحله مجرد یا ذهنی ارزشیابی پایانی می باشد.
الگوهای تدریس: الگوی مشارکتی (همیاری) فعالیت گروهی نحوه ی تعامل و چینش کلاس: به صورت گروهی



وسایل لازم:
کتاب ریاضی – تخته – گچ – مکعبهای چوبی – لاکی – پلاستیکی – یا مقوایی یا کاغذی – چسب – لیوان، ظرف شیشه ای بزرگ استوانه ای شکل – یک نوار کاغذی – سنگ و فلز – دفتر نمره کلاس – مقوا – کاغذ A4 – کارتهای تشویقی، قوطی شیر سه گوش – جعبه دستمال – کاغذ مکعب مستطیل یا مربع شکل – کبریت – جایزه – ستاره های تشویقی – برای نصب روی عکس گروهها – مدل کلاس و نحوه تعامل و گروه بندی دانش آموزان به سه گروه: بر اساس درس احجام – 1- گروه مربع 2- گروه مستطیل 3- گروه مثلث.
ضمنا بچه ها به سه گروه 5 تایی تقسیم شده اند که یکنفر که کم می باشد خودم به آن گروه 4 نفری می پیوندم.


رابطه ریاضی با هوش

ا دکتر على آبکار استاد ریاضى و عضو هیأت علمى دانشکده علوم دانشگاه تهران در مورد ریاضى و کاربردش در زندگى و لذت حل مسأله گفت وگویى انجام داده ایم
دسته بندی ریاضی
بازدید ها 10
فرمت فایل doc
حجم فایل 12 کیلو بایت
تعداد صفحات فایل 14
رابطه ریاضی با هوش

فروشنده فایل

کد کاربری 1024
کاربر

رابطه ریاضی با هوش


با دکتر على آبکار استاد ریاضى و عضو هیأت علمى دانشکده علوم دانشگاه تهران در مورد ریاضى و کاربردش در زندگى و لذت حل مسأله گفت وگویى انجام داده ایم که مى خوانید:
چرا ریاضى مى خوانیم؟ اصلاً ریاضى به چه دردى مى خورد؟
علوم ریاضى در حالت کلى پایه تمام علوم مهندسى است. ریاضى مادر تمام علوم است و به عنوان علم دقیقه مطرح مى شود هر چه علوم دیگر به ریاضى نزدیک باشند مستدل تر و قطعى تر از علومى هستند که از ریاضى دور مى شوند. ممکن است در علوم اجتماعى نظریه هاى مختلفى داشته باشیم که همه نظریه ها بسته به موقعیت هاى گوناگون درست باشند ولى در ریاضى تنها یک نظریه داریم یا درست یا غلط. اغلب تئورى هاى ریاضى ریشه فیزیکى دارند و منشأ و پیدایش آنها در مسائل علمى بوده است.
یعنى تمام فرمول هایى که در تمام این سالها کشف شده و شما زمانى خوانده اید و حالا تدریس مى کنید در مسائل علمى فیزیک و شیمى و اقتصادى کاربرد دارد؟
خیر، گاه مى دانیم که این فرمول ها چه کاربردى دارد و منتها خودمان دیگر نمى توانیم به کاربردشان بپردازیم و گاهى هم فرمول را مى دانیم و آیندگان کاربردش را پیدا مى کنند. اما یک مسأله وجود دارد هیچ علمى مستقیماً به شکوفایى و بارورى نمى رسد مگر این که بخش هایى از ریاضى در آن به کار برده شده باشد. پس ریاضیدان غیر از لذتى که خودش مى برد از روى مفاهیم ریاضى باعث رشد جامعه و تکنولوژى مى شود.
لذت؟
بله، به یک ریاضیدان در حالت حل مسأله لذتى دست مى دهد و او را ارضا مى کند در فلسفه به این حالت لذت حل مسأله مى گویند که افراد دیگر این لذت را درک نمى کنند. این حالت در ریاضى مثل گل کردن طبع شعر شاعرى است که یکباره باعث مى شود شعر بگوید.
تمام کاربردهایى که از ریاضى گفتید کاربردهایى بود که یک ریاضیدان در زندگى حرفه اى از ریاضى مى کند. آیا در زندگى اجتماعى هم از ریاضى استفاده مى شود؟ ریاضى در زندگى اجتماعى هم کاربرد دارد؟
البته، ما نباید از خودمان تعریف کنیم ولى کسى که ریاضیات مى خواند بهتر فکر مى کند و کسى که بهتر فکر مى کند بهتر زندگى مى کند.
پس به خاطر این که بهتر فکر کنیم از اول دبستان تا سال آخر دبستان ریاضى مى خوانیم؟
بله، ریاضى کمک مى کند که بهتر فکر کنیم.
براى بهتر فکر کردن راههاى بهترى هم وجود دارد. چرا شطرنج بازى نمى کنیم که فکرمان باز شود؟
شطرنج حالت خاص دارد. البته بخشى از ریاضیات هم جنبه شطرنج و بازى دارد که به صورت فرم تعمیم گسترش پیدا مى کند و در علوم دیگر استفاده مى شود.
یعنى ریاضى خواندن ما فقط به خاطر این است که بتوانیم بهتر فکر کنیم. یعنى من اگر انتگرال و مثلثات نمى خواندم نمى توانستم فکر کنم؟
خیر، این طور نیست، ریاضى در زندگى روزمره به بالابردن قوه تفکر کمک مى کند. اما کاربرد و استفاده هاى دیگرى هم دارد. فرض کنید بخشى از ریاضیات آمار است. یک متخصص علوم اجتماعى و تربیتى آیا مى تواند منهاى آمار مطالعات خودش را ادامه دهد. پس این طور نیست که فرد همان لحظه از چیزى که مى خواند بهره مند شود. من به عنوان ریاضیدان از علوم اجتماعى - ارتباطات و روانشناسى به یک حداقلى نیازمندم که در زندگى استفاده کنم. شما هم باید حداقلى از ریاضى بدانید ولى کسى نمى گوید: همه باید ریاضیدان شوند.
این حداقل مى تواند در حد چهار عمل اصلى باشد؟ این طور نیست؟
حدود را ما تعیین نمى کنیم. اتفاقاً آنها که حداقل ها را تعیین مى کنند ریاضیدان نیستند. کارشناسان روانشناسى و تعلیم و تربیت در وزارت آموزش و پرورش و وزارت علوم این حدود را تعیین مى کنند. البته این که شما مى گویید در حد چهارعمل اصلى درست نیست همانطور که گفتم حتى محققان علوم اجتماعى و علوم تربیتى هم به یادگیرى آمار احتیاج دارند و از ریاضى استفاده مى کنند. اما نظر ما این است که کمیت و حجم باید کم شود و بیشتر به کیفیت اهمیت داده شود.
گفتید کسانى که ریاضى مى خوانند بهتر فکر مى کنند آیا افراد باهوش ریاضى مى خوانند؟
ریاضى با هوش نسبت مستقیم دارد. یعنى اغلب ریاضیدان ها افراد باهوشى هستند شاید هم خود ریاضى در پروسه پرورش هوش تأثیر مى گذارد اما این بدان معنى نیست که افرادى که تمایلى به یاد گرفتن ریاضى ندارند افراد بى استعداد یا کم هوشى هستند. ریاضى با علاقه هم رابطه مستقیم دارد.
شما در تمام سالهایى که ریاضى مى خواندید به تدریس فکر مى کردید؟ یعنى دلتان مى خواست ریاضى بخوانید که آن را به دیگران تدریس کنید؟
شغل آرمانى براى یک دانشجوى ریاضى گرفتن جاى اساتید سابقش است و آرمانى تر این که موفق به کشف فرمول یا حل مسأله اى شود که اسمش در کتابها ماندگار شود. من به اولین آرزویم رسیده ام و حالا به آرزوى دوم فکر مى کنم


انسان اولیه چگونه می شمرد؟

در آغاز، انسان اولیه برای نشان دادن عدد مورد نظر خود از زبان اشاره استفاده می کرد شاید به ببری که کشته بود یا به سر نیزة همسایه اش اشاره می کرد
دسته بندی ریاضی
بازدید ها 12
فرمت فایل doc
حجم فایل 61 کیلو بایت
تعداد صفحات فایل 17
انسان اولیه چگونه می شمرد؟

فروشنده فایل

کد کاربری 1024
کاربر

انسان اولیه چگونه می شمرد؟


در آغاز، انسان اولیه برای نشان دادن عدد مورد نظر خود از زبان اشاره استفاده می کرد. شاید به ببری که کشته بود یا به سر نیزة همسایه اش اشاره می کرد. یا شاید از انگشتانش برای نشان دادن عدد استفاده می کرد. سه انگشت دست معنی» سه« می داد، خواه سه نیزه یا سه ببر دندان دشنه ای، یا سه غار یا سه سر نیزه.
می دانیم که در زندگی روزمره» عدد« کلمه یا نشانه ای است که بر مقدار و تعداد معینی دلالت می کند.اما لازم نیست آنچه را که ما درباره اش گفتگو می کنیم، مشخص کند. مثلاَ» سه« یا» 3« می تواند یه معنی سه هواپیما، سه قلم یا سه کتاب باشد.
در ابتدا، انسان اولیه می توانست تا دو بشمارد.امروزه هنوز در جهان، قبایلی ابتدایی مانند بومیان بدوی استرالیا» ابورجین« ها وجود دارند که فقط سه عدد می شناسند:یک،دو و بسیار. اگر یک نفراز این قبیله سه عدد بومرانگ(*) یا بیشتر داشته باشد، برای شمارش آن فقط عد بسیار را به کار می برد. البته بیشتر انسانهای اولیه تا ده، یعنی مجموع تعداد انگشتان دستان می شمردند. بعضی فقط تا 20 یعنی مجموع تعداد انگشتان دست و پایشان می شمردند.
هنگامی که با انگشتان دست شماره می کردند، تفاوتی نمی کند که از انگشت کوچک دست یا از انگشت شست شروع کنید. اما بین برخی از اقوام برای این کار قاعده هایی وجود داشت. مثلاَ» زونی« ها (قبیله ای از سرخپوستان آمریکای شمالی) شمردن را از انگشت کوچک دست چپ شروع می کردند.یا سرخپوستان اتوماک آمریکای جنوبی شمردن را با انگشت شست آغاز می کردند.
آدمی چون متمدن تر شد، از ترکه چوب، ریگ و گوش ماهی برای نمایش اعداد استفاده می کرد.آنها سه ترکه یا ریگ را در کنار هم ردیف می کردند که معنی»سه«را برساند. عده ای باایجاد شیار هایی بر روی چوب یا گره هایی که به یک طناب می زدند منظورشان را از عددی که می خواستند بیان کنند
می رسانیدند. به این ترتیب همیشه چوبخط یا طناب حساب را با خودشان همراه داشتند یا آن را جایی حفظ می کردند.
انسان از چه وقتی ارقام عددی را به کار برد؟
تا آنجا که بر ما معلوم است در حدود 3000 سال پیش از میلاد، مصریان قدیم و مردمان بین النهرین (سرزمین بین دجله و فرات در عراق امروز) علاماتی برای نوشتن اعداد داشتند. این مردمان با آنکه بسیار دور از هم می زیستند،هر یک مستقلاَ موفق به اختراع یک رشته از ارقام شدند. ارقام سادة آنها چون 1،2و3 المثنای چوب و چوبخط انسانهای نخستین بود. جالب اینجاست که در بسیاری از دستگاههای ارقام که در سراسر جهان کشف شده است رقم 1 به شکل یک خط کوتاه (مانند یک چوب)یا به شکل یک نقطه (مانند ریگ) نوشته می شد.
مردم باستان اعداد را چگونه می نوشتند؟
مصریان باستان ارقام را روی پاپیروس می نوشتند. پاپیروس نوعی کاغذ بود که از نی نیزارهای کناره رود نیل تهیه می شد، یا آنها را روی کوزه ها نقش می کردند یا بر دیوارهای معبدها و هرمهایشان می کندند.
بابلیها از سومریها آموختند که چگونه ارقام را بر لوحه های گلی بنویسند.
چینیهای قدیم با مرکب و قلم خیزران یا قلم پر بر روی پارچه می نوشتند. مایاهای آمریکای مرکزی، بی آنکه با دیگر تمدنهای دنیا ارتباط داشته باشند، یکی از جالبترین دستگاهای عددی را به وجود آوردند. آنها برای نمایش ارقام فقط از سه علامت استفاده می کردند، یک تقطه. ، یک خط مستقیم ـ ، . یک شکل بیضی .


آشنایی به راه و روش کسب مجهولات

مجموعه طرق که انسان را به کشف مجهولات وحل مشکلات هدایت می‌کند مجموعه قواعد که به هنگام بررسی وپژوهشی واقعیات باید به کار برده شود
دسته بندی ریاضی
بازدید ها 11
فرمت فایل doc
حجم فایل 38 کیلو بایت
تعداد صفحات فایل 56
آشنایی به راه و روش کسب مجهولات

فروشنده فایل

کد کاربری 1024
کاربر

آشنایی به راه و روش کسب مجهولات


اهداف مطالعه روش تحقیق
1-آشنایی به راه وروش کسب مجهولات <- مسئله و مشکل معلوم و مشخص است به دنبال عوامل ایجاد کننده هستیم 2-آشنایی به راه وروش دستیابی به حقایق <- حقیقت برای ما ناشناخته است و به دنبال کشف وبا ایجاد آن هستیم
آشنایی با مسائل ومشکلات موجود در انجام تحقیق
آشنایی به راه وروش های علمی تحقیق ازطریق مطالعه نظری وکسب تجربیات عملی
کسب آمادگی لازم برای انجام یک تحقیق
علم چیست؟ عبارت است از تراکم سیستماتیک اطلاعات ودانستنیها قابل اثبات به عبارت دیگر روش کشف مجهولات از طریق معلومات یا توافق فکری و توافق نظری
اهداف علم
1-فرارفتن از حد توصیف 2-مدرج ساختن ابزار شناخت ورابطه های علی سنجش 3-پایداری پدیده ها 4-تعین رابطه تقدم 5-تعیین تکرارپذیری
1-
2-
3-آنچه از روابط پدیده ها بدست می آید حقیقی است یا خیر
4-علم بدنبال اثبات تقدم علت بر معلول است
5-آیا اگر به نتیجه یک بررسی علمی دست یافتیم در صورت تکرار برسی وآزمون نتایج یکسان بدست می آید
مختصات علم
1-از روش خاص پیروی می‌کند
2-ابطال پذیر است وبدلیل ابزار وفنون جدید وشرایط زمان ومکان جامعه آماری باعث یافته های جدید علمی می‌شود که علوم قبلی را ابطال می‌کند
3-دارای تکامل طولی و عرضی است پیشرفت های بدست آمده در یک زمینه علمی بدون منسوخ کردن ونفی علوم قبلی گسترش می یابند و از نظر عرفی رشد وتکامل می یابند.( مثال کشف عناصر موجود در طبیعت)
تکامل طولی علم باعث نفی یافته های قبلی میشود(مانند کشف گردش زمین به دور خورشید )
هدف علمشناخت حقیقت است
شیوه های شناخت
1-روش حجیت (تقلید محض) Authortarian mode
از طریق استناد ومراجعه به کسانی که دارای صلاحیت علمی واجتماعی لازم می باشند بدست می آید ومیزان صلاحیت وارجحیت وشهرت فرد تاثیر بسیاری دارد وا ندیشه چندانی نمی طلبد
روش پررمزوراز mysterical mode
از طریق تاکید بر نیروهای برتر و یا ماوراء طبیعه در حدود شناخت روابط بین پدیده ها بر می آیند
روش منطقی(فردگرایانه)Rationalistic mode
هر چیزی براساس عقل ومنطق قابل شناخت می‌باشد. در این روش روشهای قبلی مردود هستند وهر چه از طریق اندیشه و عقل بدست می آید قابل قبول می‌باشد(دکارت)
روش علمی scintific
در این روش از طریق حس وتجربه واقعیت مسائل روشن وقابل شناخت می‌شوند. و در بین تمام روشها بیشترین استفاده را در شناخت دارد هر چند ممکن است که از سایر روشهای شناخت به منظور مراحلی از روش تحقیق استفاده شوند ولی در نهایت بایستی از طریق روش علمی تایید شوند
روش –شیوه Metod
دستیابی به نتایج علمی میسر نیست مگر با روش شناسی صحیح
روش(دکارت) راهی است که برای دستیابی به حقیقت علوم باید پیمود وبه عبارتی مجموعه تدابیر وشیوه هایی است که برای شناخت حقیقت و برکناری از لغزش به کار برده میشود و به طور کلی به سه چیز اطلاق می‌شود
مجموعه طرق که انسان را به کشف مجهولات وحل مشکلات هدایت می‌کند
مجموعه قواعد که به هنگام بررسی وپژوهشی واقعیات باید به کار برده شود
مجموعه ابزار وفنون که راهبری از مجهولات به معلومات را میسر می‌کند
ویژگیهای روش
1- انتظام پذیر بودن systematic 2-عقلایی بودن Rationalistic
3-روش علمی Emetion 4-واقعیت گرایی Reality
5-شک دستوریMetodcal doobt
1-انتظام پذیر بودن روش ممکن است مجموعه ای از اقدامات مختلف باشد وبایستی تقدم وتاخیر آن رعایت شود ودر غیر این صورت نتیجه ای حاصل نمی شود.
2-عقلایی بودن هر روش منظمی باید بر عقل وفرد منطبق باشد و بنابراین روشهای انتظام پذیر که ناشی از توهم وتخیلات واحساسات باشد پذیرفتنی نیست
روح علمی هر روش منظم وعقلایی باید دارای روح علمی نیز باشدکه مستلزم شرایطی چون بی طرفی خویشتن دارای صعه صدر وتواضع است.
واقعیت گرایی کشف قوانین درست تا نظریات مطقن باید از مسائلی چون درون کاوی-درون نگری یا شهودگرایی و هر آنچه را که موجب دوری از واقعیت می‌شود جدایی یابد
شک دستوری در این روش محقق به دنبال پی ریزی روشی است که بدور از تقلید صرف یا حافظه محض و یا تعقل واندیشه مبتنی بر شک دستوری مقدمه دانش مستقل را فراهم نماید.
قواعد و ویژگیهای تحقیق علمی
قاعده تجاهل یعنی خود را به جهل زدن و پاک نمودن ذهن از هر گونه پیش داوری وکنار گذاشتن کلیه محفوظات که باعث عدم بی طرفی می‌شود واحساسات وتعصبات را در امر تحقیق دخالت میدهد
عینیت گرایی هر آنچه را می بینیم ملاک عمل قرارداده و حتی الامکان در جمع آوری اطلاعات به روش علمی استفاده نماییم و از روش ذهنی تنها در تبیین استدلالها و تجزیه وتحلیل ونتیجه گیری مطالب استفاده کنیم
تحدید مصادیق ( محدود کردن) مشخص نمودن حدود یک مسئله جهت جلوگیری از دخالت عوامل خارجی باید موضوع مورد بررسی را به کوچکترین اجزا ممکن تجزیه نمود و

حدود هر مورد را مشخص نماییم این امر باعث می‌شود تا عوامل خارجی درامر تحقیق دخالتی نداشته باشند از طرفی امکان سنجش واندازه گیری آن فراهم شود.
به هم پیوستگی در قاعده به هم پیوستگی محقق باید در تجزیه وتحلیل وتصمیم گیری اصل کلیت را در نظر داشته باشد وبا توجه به ارتباط بین امور آنها راتجزیه وتحلیل کند و چنانچه جزئیات موضوعی به صورت منفرد ومجزا مورد مطالعه قرار گیرد باید در نهایت تاثیرات متقابل آن با دیگر اجزاء مورد بررسی قرارگیرد مانند بررسی ابعاد و اجزا ساختار سازمانی به صورت جزیی و بعد تجزیه وتحلیل آن با دیگر اجزا مورد بررسی قرار گیرد مانند بررسی ابعاد و اجزا ساختار سازمانی به صورت جزیی و بعد تجزیه وتحلیل آن در یک قالب کلی وپیوسته
افزایشی بودن نتایج حاصل از تحقیقات علمی باید اطلاعات جدیدی به دانش بشری اضافه کند وموجب گسترش مرزهای آن گردد بنابراین سازمان دهی و بیان مجدد دانسته های قبلی نمی تواند تحقیق علمی محسوب شود.
تجربی بودن وجود امکان آزمایش علمی و عینی فرضهای ذهنی در مقابل واقعیات است
نظم داشتن در تحقیق علمی باید از روشهای سیستماتیک ومنظم بهره جست
تحقیق طلبی محقق باید در حوضه مورد تحقیق ومطالعه از آگاهی ودانش نسبی برخوردار باشد
تعمیم پذیری نتایج حاصل از تحقیق باید قابلیت عمومیت دادن آن به جامعه آماری را داشته باشد