دسته بندی | ریاضی |
بازدید ها | 21 |
فرمت فایل | doc |
حجم فایل | 67 کیلو بایت |
تعداد صفحات فایل | 56 |
نسبیت
مقدمه :
معمولا سه مرحله مجزا در تحول بینیتی وجود دارد. این سه مرحله به طور شماتیک است. در ابتدا یک زیر وامه که تشکیل از یک صفحه فریتی است روی مرزدانه آشیت جوانه زنی کرده و تا زمانی که رشد آن توسط تغییر شکل پلاستیک آشیت زمینه متوقف نشده به رشد خود ادامه می دهد. در این مرحله زیر واحدهای جدید در نوک صفحه فریتی قبلی جوانه زنی کرده و رشد می کنند . مجموعه ای از چند زیر واحد را اصطلاحا یک شیف (Sheef) می گویند. سرعت متوسط طویل شدن یک شیف قاعدتا کمتر از یک زیر واحد است که علت آن وقفه های زمانی بین تکیل زیر واحدهای متوالی است . رسوبگذاری کاربید که در مرحله بعدی وقوع می یابد سرعت تحول را با حذف کربن از آشیت باقی مانده یا از فریت فوق اشباع متاثر می کند.
دمای شروع تحول
دمای شروع تشکیل نسبیت و هم چنین فریت ویرمن اشتاین که ماهیت تحول آن بسیار شبیه به نسبیت می باشد ) به ترکیب شیمیایی فولاد بیش از دمای حساس هستند (شکل a6.3(
این مساله نشان دهنده اثر انحنای محلول بر تحولات بینیتی یا فریت ویرمن اشتاتن است.
ویاگرام زمان – دما – استحاله (TTT) در فولاد ها اغلب مطابق شکل b 6.3 است . همانطور که ملاحظه می گردد این دیاگرام شامل در منحنی c شکل است که بالائی مربوط به تحولات نفوذی یا تحولات همراه با دوباره بنا شدن ساختارهای فازی (Re Consteructive) و منحنی پایینی مربوط به تحولات برشی یا همراه با جابجایی دسته جمعی انحنا (displacive) می باشند . دمای روی منحنی پایینی شکل b6.3 نشان دهنده بالاترین دمایی است که فریت ویرمن اشتاتن و نسبیت یکسان بوده و صرفا به شرایط ترمودینامیکی بستگی دارد. با توجه به تاثیر عناصر آلیاژی بر دمای شروع تحول نسبیتی روابط تجربی زیادی در فولادهای مختلف ارائه شده اند مثلا رابطه برای فولادهای مختلف با آنالیز 55/0-1/0 درصد کربن 35/0-1/0 درصد سیلسیوم 7/1-2/0 درصد منگنز 0/5-0 درصد نیکل 5/3-0 درصد کروم 0/1-0 درصد مولیون ارائه گردیده است.
جوانه زنی نسبیت
همانطور که اشاره گردید جوانه زنی نسبیت مشتمل است بر تشکیل یک زیر واحد به صورت یک صفحه فریتی در مرزدانه آشیت اولیه سرعت جوانه زنی تابعی از دما و انرژی فعالسازی تحول است و به صورت زیر بیان می گردد.
از رابطه فوق v فاکتور نوسانی انرژی فعالسازی جوانه زنی و A ثابت است .
رشد نسبیت
جابجایی فصل مشترک بین واحدهای نسبیت باآشتینت باقی مانده نیازمند جابجایی ایتمهای فاز مادر و اختیار ساختار فاز محصول است . سهولت وقوع این فرایند میزان تحرک مرز را تعیین می نماید البته توزیع اتمهای محلول و همچنین کربن حرکت فصل مشترک را محدود می نماید .بنابر این دو عامل تحرک مرز در اثر جابجایی اتمهاو نفوذ کربن و اتمهای محلول تعیین کننده سینیتک رسد نسبیت هستند . هر دو این فرایندها نیرو محرکه موجود برای تحول را مصرف می کنند.
هنگامی که بیشتر نیرو محرکه موجود جهت نفوذ اتمها مصرف می گردد تحول را کنترل شونده توسط نفوذ می گویند و اگر بالعکس نیرومحرکه جهت اتمها در سراسر فصل مشترک مصرف شود آنرا تحول کنترل شونده بالفصل مشترک می گویند . ابعاد تیغه های نسبیت در طی رشد تحت کنترل نفوذ با زمان به صورت پارا بولیک تغییر می کند . با افزایش ابعاد فاز محصول منطقه نفوذی هم گسترش می یابد و افزایش مسافت نفوذ جهت رسیدن اتمهای محلول به دورترین نقاط باعث کاهش سرعت نفوذ می شود .
ولی صفحات یا سوزنهای موجود با توجه به توزیع اتمهای محلول به وجوه با سرعتی ثابت به رشد خود ادامه می دهند.
دسته بندی | ریاضی |
بازدید ها | 10 |
فرمت فایل | doc |
حجم فایل | 9 کیلو بایت |
تعداد صفحات فایل | 13 |
تحقیق در مورد هندسه
مقدمه
هندسه هم مانند حساب، یکی از کهن ترین بخش های دانش ریاضیات است.تاریخ پیدایش آن در ژرفای سده های گذشته است.هندسه در دنیای کهن،بیشتر جنبه کاربردی داشته است و این دوران خود را، که طولانی ترین دوران تکامل آن است، در ایلام، بابل،مصر،چین و در واقع در همه سرزمین های گذرانده است و همه ملت ها در ارتباط بااندازه گیری، به ویژه اندازه گیری زمین های کشاورزی، در ساختن مفهوم های هندسی دخالت داشته اند.
مفهوم اصل،قضیه ودیدگاه اقلیدس:
«اصل» در هندسه، به حکمی گفته می شود که بدون اثبات پذیرفته شود؛ در واقع درستی آن با تجربه سده های متوالی تایید می شود.حکم هایی که به یاری اصل ها ثابت می شوند،« قضیه » نام گرفته اند. اثبات،عبارت از استدلالی است که به یاری آن و به یاری اصل ها، می توان قضیه را ثابت کرد.قضیه،ترجمه ای از واژه یونانی «ته ئورم» که به معنای «اندیشیدن» است.
اصل ها و قضیه ها را برای نخستین بار،دانشمندان یونانی وارد دانش کردند. ارشمیدس(سده سوم پیش از میلاد) در کتاب های خود،بارها از اصل وقضیه استفاده کرده است. تاسرانجام اقلیدس(سده سوم پیش از میلاد) در«مقدمات» خود در سیزده کتاب اصل هاو قضیه های هندسی را منظم کرده است.
«مقدمات اقلیدس» تنها کتابی است که در طول نزدیک دو هزار سال پس از او، هندسه را به دیگران آموخته است.حتی امروز هم، هندسه دبیرستانی بر اساس مقدمات اقلیدس است.
برخی از اصل ها را ،اقلیدس «پوستولا» (خواست)نامیده است. برای نمونه،نخستین پوسترلا در «مقدمات» اقلیدس، به این ترتیب تنظیم شده است: «دو نقطه را میتوان به وسیله خط راست به هم وصل کرد.»
به ظاهر، پوستولاهای اقلیدس،ویژه هندسه است. او اصل هایی را که عمومی ترند ودر دانش های دیگر هم به کار می روند «آکسیوم» می نامد. امروز همه اصل ها(آکسیوم ها وپوستولاها) را «آکسیوم» می نامند که در زبان فارسی، به «اصل موضوع» معروف اند.
• معمای اصل پنجم اقلیدس
در طول بیش از دو هزارسال، دانشمندان گمان می کردند که هندسه ای جز هندسه اقلیدسی وجود ندارد. براساس این تصور، ریاضیدانان تلاش می کردند پوستولاهای اقلیدس را از دیگر اصل های موضوع نتیجه بگیرند. تغییر یافته پوستولای پنجم اقلیدس به وسیله «پولی فر» چنین می گوید: از یک نقطه بیرون از یک خط راست، نمی توان دو خط راست موازی با خط راست مفروض رسم کرد.ولی همه تلاش ها برای اثبات این اصل موضوع ناکام ماند.
ریاضیدانان ایرانی از جمله فضل حاتم نیریزی وعمر خیام، در این راه کوشیدند؛ ولی نتیجه این شد که اصل موضوع دیگری را به جای اصل موضوع اقلیدس قرا دادند. خیام در کتاب خود که به این موضوع اختصاص دارد، چهارضلعی های دو قائمه متساوی الساقین را مطرح می کند. او از چهارضلعی هایی صحبت می کند که دو ضلع رو به رو با هم برابر وبر قاعده عمود باشند.بعد ابتدا ثابت می کند، دو زاویه دیگر این چهارضلعی باهم برابرند وبا جانشین کردن اصل دیگری به جای پوستولای پنجم اقلیدس،حاده یامنفرجه بدون دو زاویه دیگر را رد می کند. طرح خیام به وسیله نصیرطوسی به کشورهای اروپایی می رود. از جمله ساکری ریاضیدان ایتالیایی، با طرح همان چهارضلعی ها تلاش می کند اصل موضوع اقلیدس را ثابت کند؛ ولی به نتیجه ای نمی رسد.
دسته بندی | ریاضی |
بازدید ها | 12 |
فرمت فایل | doc |
حجم فایل | 619 کیلو بایت |
تعداد صفحات فایل | 38 |
هندسه 2
فصل اول:
1) اصولی از خط راست:
الف) یک خط شامل مجموعه ای از نقاط است که می توان گفت هر خط شامل حداقل دو نقطة متمایز است.
ب) دو خط راست متمایز حداکثر یکدیگر را در یک نقطه قطع می کنند.
ج) هر دو نقطه متمایز حداقل بر یک خط قرار دارند.
د) بین هر دو نقطه متمایز از یک خط راست می توان نقطه ای متمایز از آن دو بدست آورد.
2) اصولی از صفحه:
الف) صفحه مجموعه ای است از نقاط و هر صفحه حداقل شامل 3 نقطه است که بر یک استقامت نمی باشند.
ب) بر هر سه نقطه غیرواقع بر یک خط راست یک صفحه می گذرد.
ج) اگر هر دو نقطه از خطی، در یک صفحه باشند تمام نقاط این خط نیز در این صفحه است.
3) فضا: مجموعه ای نامتناهی شامل کلیه نقاط است.
4) تعریف: تعریف یعنی شناساندن یک چیز یا یک شیء بوسیله مشخصات لازم برای شناساندن. تعریف باید جامع و مانع باشد.
5) تعریف نشده ها: آنچه را که با درک و تصورکردن و یا از طریق مشاهده شناخته و بدون تعریف می پذیریم.
6) برهان: رسیدن از یک سلسله گزاره های درست قبلی به گزاره هایی که درستی آن را بر مبنای آنچه قبلاً پذیرفته ایم قبول می کنیم.
7) قضیه: هر گزاره ای که درستی آن نیازمند برهان است.
8) اصل: هر گزاره ای که درستی آن نیاز به برهان ندارد.
9) شکل: هر مجموعه ای از نقاط را یک شکل نامند.
10) نیم خط:مجموعه ای از نقاط یک خط را که از یک طرف محدود و از یک طرف نامحدود باشد.
با n نقطه متمایز در یک راستا n2 نیم خط داریم
11) پاره خط: جزئی از یک خط راست که از دو طرف محدود باشد. مانند پاره خطAB
دسته بندی | ریاضی |
بازدید ها | 17 |
فرمت فایل | doc |
حجم فایل | 67 کیلو بایت |
تعداد صفحات فایل | 11 |
تابع متناوب
تعریف:
تابع f را متناوب گوئیم هرگاه وجود داشته باشد به طوری که:
کوچکترین مقدار مثبت t را در صورت وجود با T نشان داده و به آن دوره تناوب اصلی تابع گوئیم ( و و t بستگی به x ندارد) به عبارت دیگر در تابع متناوب دوره تناوب عبارت است از کوچکترین مقدار مثبت که وقتی به متغیر اضافه شود مقدار تابع فرق نکند.
دورة تناوب روی نمودار: قسمتی از نمودار که بر اساس آن بتوان قسمتهای دیگر را رسم کرد.(الگویی از یک نمودار میباشد)
قرارداد:
هرجا صحبت از دوره تناوب می کنیم منظور دوره تناوب اصلی یا کوچکترین دوره تناوب تابع است.
نکته 1: تابع ثابت متناوب است و هر عدد حقیقی می تواند دوره تناوب آن باشد ولی کوچکترین دوره تناوب (دوره تناوب اصلی) ندارد.
نکته 2: در توابع ثابتی که به طور متوالی و منظم ناپیوسته هستند فاصله دو نقطه انفصال متوالی دوره تناوب اصلی تابع است.
نکته 3:ممکن است مجموع، تفاضل و… دو تابع که هیچکدام متناوب نیستند متناوب باشد.
دسته بندی | ریاضی |
بازدید ها | 10 |
فرمت فایل | doc |
حجم فایل | 12 کیلو بایت |
تعداد صفحات فایل | 14 |
رابطه ریاضی با هوش
با دکتر على آبکار استاد ریاضى و عضو هیأت علمى دانشکده علوم دانشگاه تهران در مورد ریاضى و کاربردش در زندگى و لذت حل مسأله گفت وگویى انجام داده ایم که مى خوانید:
چرا ریاضى مى خوانیم؟ اصلاً ریاضى به چه دردى مى خورد؟
علوم ریاضى در حالت کلى پایه تمام علوم مهندسى است. ریاضى مادر تمام علوم است و به عنوان علم دقیقه مطرح مى شود هر چه علوم دیگر به ریاضى نزدیک باشند مستدل تر و قطعى تر از علومى هستند که از ریاضى دور مى شوند. ممکن است در علوم اجتماعى نظریه هاى مختلفى داشته باشیم که همه نظریه ها بسته به موقعیت هاى گوناگون درست باشند ولى در ریاضى تنها یک نظریه داریم یا درست یا غلط. اغلب تئورى هاى ریاضى ریشه فیزیکى دارند و منشأ و پیدایش آنها در مسائل علمى بوده است.
یعنى تمام فرمول هایى که در تمام این سالها کشف شده و شما زمانى خوانده اید و حالا تدریس مى کنید در مسائل علمى فیزیک و شیمى و اقتصادى کاربرد دارد؟
خیر، گاه مى دانیم که این فرمول ها چه کاربردى دارد و منتها خودمان دیگر نمى توانیم به کاربردشان بپردازیم و گاهى هم فرمول را مى دانیم و آیندگان کاربردش را پیدا مى کنند. اما یک مسأله وجود دارد هیچ علمى مستقیماً به شکوفایى و بارورى نمى رسد مگر این که بخش هایى از ریاضى در آن به کار برده شده باشد. پس ریاضیدان غیر از لذتى که خودش مى برد از روى مفاهیم ریاضى باعث رشد جامعه و تکنولوژى مى شود.
لذت؟
بله، به یک ریاضیدان در حالت حل مسأله لذتى دست مى دهد و او را ارضا مى کند در فلسفه به این حالت لذت حل مسأله مى گویند که افراد دیگر این لذت را درک نمى کنند. این حالت در ریاضى مثل گل کردن طبع شعر شاعرى است که یکباره باعث مى شود شعر بگوید.
تمام کاربردهایى که از ریاضى گفتید کاربردهایى بود که یک ریاضیدان در زندگى حرفه اى از ریاضى مى کند. آیا در زندگى اجتماعى هم از ریاضى استفاده مى شود؟ ریاضى در زندگى اجتماعى هم کاربرد دارد؟
البته، ما نباید از خودمان تعریف کنیم ولى کسى که ریاضیات مى خواند بهتر فکر مى کند و کسى که بهتر فکر مى کند بهتر زندگى مى کند.
پس به خاطر این که بهتر فکر کنیم از اول دبستان تا سال آخر دبستان ریاضى مى خوانیم؟
بله، ریاضى کمک مى کند که بهتر فکر کنیم.
براى بهتر فکر کردن راههاى بهترى هم وجود دارد. چرا شطرنج بازى نمى کنیم که فکرمان باز شود؟
شطرنج حالت خاص دارد. البته بخشى از ریاضیات هم جنبه شطرنج و بازى دارد که به صورت فرم تعمیم گسترش پیدا مى کند و در علوم دیگر استفاده مى شود.
یعنى ریاضى خواندن ما فقط به خاطر این است که بتوانیم بهتر فکر کنیم. یعنى من اگر انتگرال و مثلثات نمى خواندم نمى توانستم فکر کنم؟
خیر، این طور نیست، ریاضى در زندگى روزمره به بالابردن قوه تفکر کمک مى کند. اما کاربرد و استفاده هاى دیگرى هم دارد. فرض کنید بخشى از ریاضیات آمار است. یک متخصص علوم اجتماعى و تربیتى آیا مى تواند منهاى آمار مطالعات خودش را ادامه دهد. پس این طور نیست که فرد همان لحظه از چیزى که مى خواند بهره مند شود. من به عنوان ریاضیدان از علوم اجتماعى - ارتباطات و روانشناسى به یک حداقلى نیازمندم که در زندگى استفاده کنم. شما هم باید حداقلى از ریاضى بدانید ولى کسى نمى گوید: همه باید ریاضیدان شوند.
این حداقل مى تواند در حد چهار عمل اصلى باشد؟ این طور نیست؟
حدود را ما تعیین نمى کنیم. اتفاقاً آنها که حداقل ها را تعیین مى کنند ریاضیدان نیستند. کارشناسان روانشناسى و تعلیم و تربیت در وزارت آموزش و پرورش و وزارت علوم این حدود را تعیین مى کنند. البته این که شما مى گویید در حد چهارعمل اصلى درست نیست همانطور که گفتم حتى محققان علوم اجتماعى و علوم تربیتى هم به یادگیرى آمار احتیاج دارند و از ریاضى استفاده مى کنند. اما نظر ما این است که کمیت و حجم باید کم شود و بیشتر به کیفیت اهمیت داده شود.
گفتید کسانى که ریاضى مى خوانند بهتر فکر مى کنند آیا افراد باهوش ریاضى مى خوانند؟
ریاضى با هوش نسبت مستقیم دارد. یعنى اغلب ریاضیدان ها افراد باهوشى هستند شاید هم خود ریاضى در پروسه پرورش هوش تأثیر مى گذارد اما این بدان معنى نیست که افرادى که تمایلى به یاد گرفتن ریاضى ندارند افراد بى استعداد یا کم هوشى هستند. ریاضى با علاقه هم رابطه مستقیم دارد.
شما در تمام سالهایى که ریاضى مى خواندید به تدریس فکر مى کردید؟ یعنى دلتان مى خواست ریاضى بخوانید که آن را به دیگران تدریس کنید؟
شغل آرمانى براى یک دانشجوى ریاضى گرفتن جاى اساتید سابقش است و آرمانى تر این که موفق به کشف فرمول یا حل مسأله اى شود که اسمش در کتابها ماندگار شود. من به اولین آرزویم رسیده ام و حالا به آرزوى دوم فکر مى کنم