وبلاگ آرکو فایل اسکای _ دانلود فایل

معرفی و دانلود مقالات ، تحقیقات و پروژه های دانشجویی در تمامی رشته ها

وبلاگ آرکو فایل اسکای _ دانلود فایل

معرفی و دانلود مقالات ، تحقیقات و پروژه های دانشجویی در تمامی رشته ها

تحقیق هندسه بردارها

بردار دارای بزرگی و جهت است، بردارها از قاعده ترکیب (برداری) خاصی پیروی می کنند لیست برداری کمیتی است که هم بزرگی و هم جهت دارد و بدین سبب می توان آن را با یک بردار نمایش داد
دسته بندی ریاضی
بازدید ها 14
فرمت فایل doc
حجم فایل 137 کیلو بایت
تعداد صفحات فایل 18
تحقیق هندسه بردارها

فروشنده فایل

کد کاربری 1024
کاربر

هندسه بردارها

بردارها:
بردار: دارای بزرگی و جهت است، بردارها از قاعده ترکیب (برداری) خاصی پیروی می کنند.
لیست برداری: کمیتی است که هم بزرگی و هم جهت دارد و بدین سبب می توان آن را با یک بردار نمایش داد.
برخی کمیتهای فیزیکی، از جمله جابجایی، سرعت و شتاب کمیتهای برداری دارند.
همه کمیتهای فیزیکی جهت ندارند، مثلاً دما، انرژی، جرم و زمان جهت خاصی را در فضا نشان نمی دهند این نوع کمیتها را نرده ای گویند و محاسبه های مربوط به آن با قاعده های جبری عادی انجام می شود.
ساده ترین کمیت برداری، جابجایی یا تغییر مکان است. برداری که جابجایی را نشان می دهد، بردار جابجایی نامیده می شود.



جمع کردن بردارها به روش هندسی :
شکل1-1 روش هندسی مربوط به جمع کردن بردارهای دو بعدی a و b را نشان می دهد.
جمع برداری که به این صورت تعریف می شود دو خاصیت مهم دارد.
نخست ترتیب جمع کردن بردارها اهمیتی ندارد. جمع کردن a و b همان نتیجه جمع کردن b با a را بدست می دهد.
یعنی (قانون جابجایی) a+b=b+a
دوم، هر گاه بیش از دو بردار داشته باشیم، برای جمع کردن می توانیم آنها را به هر ترتیبی که بخواهیم گروه بندی کنیم اگر بخواهیم بردارهای aوbوc را جمع می کنیم می توانیم نخست aوb را جمع کنیم و سپس مجموع این دو را با c بدست آوریم . همچنین می توانیم نخست bوc را جمع و سپس آن مجموع را با a جمع کنیم نتیجه ای را که به دست می آوریم برای هر دو یکسان است یعنی:
( قانون شرکت پذیری)
برادار b برداری است که همان بزرگی بردار b را دارد اما جهتش مخالف است . با جمع کردن این دو بردار داریم:

بنابراین جمع کردن –b همان اثر تفریق کردن b را دارد . از این خاصیت برای تعرةیف تفاضل دو بردار استفاده می کنیم .
فرض می کنیم: پس (تفریق برداری)
یعنی برای تعیین بردار تفاضل ، بردار را با بردار جمع می کنیم.
مؤلفه های بردارها :
مؤلفه ی یک بردار تصویر یک بردار بر روی یک محور است.
مولفه های یک بردار برای به دست آوردن مولفه های (نرده ای) هر بردار و معدن ، در راستای محورهای مختصات، از انتهای بردار خط هایی بر محور های مختصات عمود می کنیم.
مؤلفه های بردار عبارت انداز :

که در آن زاویه میان محور x مثبت و بردار a است. علامت جبری یک نقطه جهت آن رادار روی محور مربوط نشان می دهد. با در دست داشتن مؤلفه های بردار ، می توان بزرگی سمتگیری آن را معین کرد:


مقاله نسبیت

معمولا سه مرحله مجزا در تحول بینیتی وجود دارد این سه مرحله به طور شماتیک است در ابتدا یک زیر وامه که تشکیل از یک صفحه فریتی است روی مرزدانه آشیت جوانه زنی کرده و تا زمانی که رشد آن توسط تغییر شکل پلاستیک آشیت زمینه متوقف نشده به رشد خود ادامه می دهد
دسته بندی ریاضی
بازدید ها 21
فرمت فایل doc
حجم فایل 67 کیلو بایت
تعداد صفحات فایل 56
مقاله نسبیت

فروشنده فایل

کد کاربری 1024
کاربر

نسبیت


مقدمه :
معمولا سه مرحله مجزا در تحول بینیتی وجود دارد. این سه مرحله به طور شماتیک است. در ابتدا یک زیر وامه که تشکیل از یک صفحه فریتی است روی مرزدانه آشیت جوانه زنی کرده و تا زمانی که رشد آن توسط تغییر شکل پلاستیک آشیت زمینه متوقف نشده به رشد خود ادامه می دهد. در این مرحله زیر واحدهای جدید در نوک صفحه فریتی قبلی جوانه زنی کرده و رشد می کنند . مجموعه ای از چند زیر واحد را اصطلاحا یک شیف (Sheef) می گویند. سرعت متوسط طویل شدن یک شیف قاعدتا کمتر از یک زیر واحد است که علت آن وقفه های زمانی بین تکیل زیر واحدهای متوالی است . رسوبگذاری کاربید که در مرحله بعدی وقوع می یابد سرعت تحول را با حذف کربن از آشیت باقی مانده یا از فریت فوق اشباع متاثر می کند.
دمای شروع تحول
دمای شروع تشکیل نسبیت و هم چنین فریت ویرمن اشتاین که ماهیت تحول آن بسیار شبیه به نسبیت می باشد ) به ترکیب شیمیایی فولاد بیش از دمای حساس هستند (شکل a6.3(
این مساله نشان دهنده اثر انحنای محلول بر تحولات بینیتی یا فریت ویرمن اشتاتن است.
ویاگرام زمان – دما – استحاله (TTT) در فولاد ها اغلب مطابق شکل b 6.3 است . همانطور که ملاحظه می گردد این دیاگرام شامل در منحنی c شکل است که بالائی مربوط به تحولات نفوذی یا تحولات همراه با دوباره بنا شدن ساختارهای فازی (Re Consteructive) و منحنی پایینی مربوط به تحولات برشی یا همراه با جابجایی دسته جمعی انحنا (displacive) می باشند . دمای روی منحنی پایینی شکل b6.3 نشان دهنده بالاترین دمایی است که فریت ویرمن اشتاتن و نسبیت یکسان بوده و صرفا به شرایط ترمودینامیکی بستگی دارد. با توجه به تاثیر عناصر آلیاژی بر دمای شروع تحول نسبیتی روابط تجربی زیادی در فولادهای مختلف ارائه شده اند مثلا رابطه برای فولادهای مختلف با آنالیز 55/0-1/0 درصد کربن 35/0-1/0 درصد سیلسیوم 7/1-2/0 درصد منگنز 0/5-0 درصد نیکل 5/3-0 درصد کروم 0/1-0 درصد مولیون ارائه گردیده است.



جوانه زنی نسبیت
همانطور که اشاره گردید جوانه زنی نسبیت مشتمل است بر تشکیل یک زیر واحد به صورت یک صفحه فریتی در مرزدانه آشیت اولیه سرعت جوانه زنی تابعی از دما و انرژی فعالسازی تحول است و به صورت زیر بیان می گردد.

از رابطه فوق v فاکتور نوسانی انرژی فعالسازی جوانه زنی و A ثابت است .
رشد نسبیت
جابجایی فصل مشترک بین واحدهای نسبیت باآشتینت باقی مانده نیازمند جابجایی ایتمهای فاز مادر و اختیار ساختار فاز محصول است . سهولت وقوع این فرایند میزان تحرک مرز را تعیین می نماید البته توزیع اتمهای محلول و همچنین کربن حرکت فصل مشترک را محدود می نماید .بنابر این دو عامل تحرک مرز در اثر جابجایی اتمهاو نفوذ کربن و اتمهای محلول تعیین کننده سینیتک رسد نسبیت هستند . هر دو این فرایندها نیرو محرکه موجود برای تحول را مصرف می کنند.
هنگامی که بیشتر نیرو محرکه موجود جهت نفوذ اتمها مصرف می گردد تحول را کنترل شونده توسط نفوذ می گویند و اگر بالعکس نیرومحرکه جهت اتمها در سراسر فصل مشترک مصرف شود آنرا تحول کنترل شونده بالفصل مشترک می گویند . ابعاد تیغه های نسبیت در طی رشد تحت کنترل نفوذ با زمان به صورت پارا بولیک تغییر می کند . با افزایش ابعاد فاز محصول منطقه نفوذی هم گسترش می یابد و افزایش مسافت نفوذ جهت رسیدن اتمهای محلول به دورترین نقاط باعث کاهش سرعت نفوذ می شود .
ولی صفحات یا سوزنهای موجود با توجه به توزیع اتمهای محلول به وجوه با سرعتی ثابت به رشد خود ادامه می دهند.


مقاله مینیمم کردن توابع چند متغیره

یک کاربرد مهم حساب دیفرانسیل، پیدا کردن مینیمم موضعی یک تابع است مسائل مربوط به ماکزیمم کردن نیز با تئوری مینیمم کردن قابل حل هستند
دسته بندی ریاضی
بازدید ها 25
فرمت فایل doc
حجم فایل 561 کیلو بایت
تعداد صفحات فایل 45
مقاله مینیمم کردن توابع چند متغیره

فروشنده فایل

کد کاربری 1024
کاربر

مینیمم کردن توابع چند متغیره


مقدمه:
یک کاربرد مهم حساب دیفرانسیل، پیدا کردن مینیمم موضعی یک تابع است. مسائل مربوط به ماکزیمم کردن نیز با تئوری مینیمم کردن قابل حل هستند. زیرا ماکزیمم F در نقطه ای یافت می شود که -F مینیمم خود را اختیار می کند.
در حساب دیفرانسیل تکنیک اساسی برای مینیمم کردن، مشتق گیری از تابعی که می‌خواهیم آن را مینیمم کنیم و مساوی صفر قرار دادن آن است.
نقاطی که معادله حاصل را ارضا می کنند، نقاط مورد نظر هستند. این تکنیک را می توان برای توابع یک یا چند متغیره نیز استفاده کرد. برای مثال اگر یک مقدار مینیمم را بخواهیم، به نقاطی نگاه می کنیم که هر سه مشتق پاره ای برابر صفر باشند.
این روند را نمی توان در محاسبات عدی به عنوان یک هدف عمومی در نظر گرفت. زیرا نیاز به مشتقی دارد که با حل یک یا چند معادله بر حسب یک یا چند متغیر بدست می آید. این کار به همان سختی حل مسئله بصورت مستقیم است.

مسائل مقید و نامقید مینیمم سازی:
مسائل مینیمم سازی به دو شکل هستند:نامقید و مقید:
در یک مسئله ی مینیمم سازی نامقید یک تابع F از یک فضای n بعدی به خط حقیقی R تعریف شده و یک نقطه ی با این خاصیت که

جستجو می شود.
نقاط در را بصورت z, y, x و... نشان می دهیم. اگر نیاز بود که مولفه های یک نقطه را نشان دهیم می نویسیم:

در یک مسئله ی مینیمم سازی مقید، زیر مجموعه ی K در مشخص می شود . یک نقطة
جستجو می شود که برای آن:

چنین مسائلی بسیار مشکل ترند، زیرا نیاز است که نقاط در K در نظر گرفته شوند. بعضی مواقع مجموعه ی K به طریقی پیچیده تعریف می شود.
سهمی گون بیضوی به معادله‌ی

را در نظر بگیرید که در شکل 1-14 مشخص شده است. به وضوح مینیمم نامقید در نقطه ی
(1و1) ظاهر می شود، زیرا:

اگر
مینیمم مقید 4 است و در (0،0) اتفاق می افتد.
Matlab دارای قسمتی است برای بهینه سازی که توسط اندرو گریس طراحی شده و شامل دستورات زیادی برای بهینه سازی توابع عمومی خطی و غیر خطی است.
برای مثال ما می توانیم مسئله ی مینیمم سازی مربوط به سهمی گون بیضوی نشان داده شده در شکل 1-14 را حل نماییم.
ابتدا یک M-file به نام q1.m می نویسیم و تابع را تعریف می کنیم:


نشانه های یک نقطه عطف در تاریخ ریاضی و وظایف ما

سال جهانی ریاضیات بود و مایل بودم که مثل بسیاری از عاشقان ریاضی راجع به چیستی ریاضی چیزی تهیه کنم این کار عملی شد اما از همان موقع باورگونه ای در ذهنم ایجاد شد
دسته بندی ریاضی
بازدید ها 16
فرمت فایل doc
حجم فایل 27 کیلو بایت
تعداد صفحات فایل 29
نشانه های یک نقطه عطف در تاریخ ریاضی و وظایف ما

فروشنده فایل

کد کاربری 1024
کاربر

نشانه های یک نقطه عطف در تاریخ ریاضی و وظایف ما


سال جهانی ریاضیات بود و مایل بودم که مثل بسیاری از عاشقان ریاضی راجع به چیستی ریاضی چیزی تهیه کنم. این کار عملی شد اما از همان موقع باورگونه ای در ذهنم ایجاد شد که تا مدتها جرأت بیان صریح آن را حتی برای خودم نداشتم، چرا که با مسیری که خود در آن قدم گذاشته ام، تناقص داشت. این فکر همواره مرا آزار داده است. تصمیم گرفته بودم که روی این فکر کار جدی انجام داده و آن را در کنفرانس ریاضی در اهواز مطرح کنم ولی میسر نشد. بنابراین بنا را بر این گذاشتم که در تابستان امسال روی این مطلب مطالعات جدی انجام دهم و ثمره آن را در سی و ششمسن کنفرانس ریاضی در یزد مطرح کنم. چون کار اصلی را به تعطیلات تابستان موکول کرده بودم، مقدور نبود که خلاصه مقاله و خود مقاله را به موقع به کنفرانس ارسال کنم. بعلاوه عنوان اولیه مقاله (شرایط کنونی و وظایف انجمن ریاضی ایران) موجب سوء تعبیر نماینده انجمن شد و نظرشان این بود که مطلب بایستی در میزگرد مطرح شود تا بتوان به آن پاسخ داد، در حالی که مقاله عمدتاً در جهت تقویت انجمن است، مضافا این که میزگرد جای ارائه مقاله نیست. به هر حال این تصمیم مرا آزرده خاطر کرد و به دلیل تردید در انجام کار، مطالعاتم دچار اختلال شد. اما در هر صورت تصمیم گرفتم که این ایده را هر چند به صورت ناقص و فشرده و به شکل آزاد، در کنفرانس ارائه کنم.

حقیقتی آشکار است که هر پدیده ای، تاریخی دارد و برای این که تصمیمی برای حال و آینده آن پدیده بگیریم بایستی تاریخ گذشته اش را بدانیم. اگر بخواهیم به زبان ریاضی تشبیه کنیم، مسیر حرکت یک پدیده مثل یک منحنی همواری است که جهت حرکت آن در هر لحظه، به مسیری که تا آن لحظه طی گرده است بستگی دارد و اگر منحنی را یک منحنی هدفدار تصور کنیم (که در مسائل اجتماعی این چنین است) مسیر گذشته و هدف نهایی جهت گیری بعدی را مشخص خواهد کرد. اگر با توجه به مسیر گذشته جهت منحنی در راستای هدف نباشد، آن نقطه، نقطه عطف خواهد بود. در بخش اول این نوشتار قصد این است که نشان دهیم در یک نقطه عطف از تاریخ ریاضیات ایستاده ایم.
این ادعا که «ما در یک نقطه عطف از تاریخ ریاضیات قرار داریم»، یک ادعای جسارت آمیزی است و نیاز به مطالعه وسیع درباره تاریخ ریاضیات و وضعیت ریاضی در دنیای امروز بویژه اروپا که محور تحولات در این رمینه است، دارد. قسمت اول ،یعنی تاریخ ریاضیات، با توجه به منابع قابل قبول تا حدی انجام شدنی است، اما قسمت دوم احتیاج به زمان بیشتری دارد و از این جهت کار خود را ناقص می دانم.

نگاهی گذرا به تاریخ ریاضی: مطمئنا تاریخ ریاضی همزمان با تاریخ اندیشه انسانی است. لذا نمی توان تاریخ دقیقی برای آغاز آن متصور شد. اسناد تاریخی نشان می دهند که شرق از قبیل چین, هند, ایران, بابل و مصر به تبع تمدنهای اولیه در آن، پیشتر از غرب صاحب علوم و از جمله ریاضیات نسبتا پیشرفته ای بودند. مقدمه «پاپیروس رایند» (1650 ق م ) که یکی از قدیمترین اسناد تاریخ ریاضی است، با توجه به کندی تحولات در عهد باستان، نشان می دهد که در اوائل هزاره دوم قبل از میلاد تمدنهای شرق دارای ریاضیاتی پیشرفته بوده اند. در این سند چنین آمده است :
«به جرئت می توان گفت که بارزترین مشخصه شعور انسان که نشان دهنده درجه تمدن هر ملت است همان قدرت استدلال کردن است، و به طور کلی این قدرت به بهترین وجهی می تواند در مهارت های ریاضی افراد آن ملت به نمایش گذاشته شود»
این سند همچنین نشان می دهد که برخلاف نظر برخی تاریخ نویسان، ریاضیات قبل از تمدن یونان باستان عمدتاً تجربی و شهودی نبوده، و به نحو قابل قبولی با استدلال همراه بوده است.

در اثر ارتباطاتی که یونیان با امپراطوری ایران، بابل و مصر داشتند و به ویژه پس از کشورگشاییهای اسکندر، یونانیان تقریبا بر همه علوم زمان خود احاطه پیدا کردند و تقریبا در همه زمینه ها و از جمله ریاضیات آثاری مدون را بوجود آوردند که تا قرنها بر جهان اندیشه حکومت می کردند. به نظر می رسد که تمایل به منطق و استدلال در قرون قبل از میلاد در یونان به اوج خود رسید. به روایت تاریخ نویسان ریاضی، اولین تلاش خوب برای استدلال مسایل ریاضی توسط تالس در سده ششم قبل از میلاد و پس از آن توسط شاگردش فیثاغورس و بعد از آن در قرون سوم ق.م. توسط اقلیدس در کتاب اصول اقلیدس به صورت مدون درآمد. کتاب اصول اقلیدس گرچه شامل مقالاتی در باره اعداد است اما بیشتر مسایل مربوط به اعداد از زاویه هندسی مورد توجه قرار گرفته اند. مشابه کار اقلیدس را «نیکوماخوس» (اواخر قرن اول بعد از میلاد) در زمینه حساب انجام داد.
رسالات منطق «ارسطو» (قرن چهارم ق.م) که بعدها به «ارغنون» مشهور شد، و اثری است ریاضی- فلسفی، نیز از جمله آثاری است که بیش از هزار سال بر جهان اندیشه، از جمله ریاضی، تاثیرات عمیق گذاشت. کارهای «ارشمیدس» (سده سوم قبل از میلاد، برخی او را یکی از بزرگترین ریاضیدانان همه اعصار نامیده اند ) همواره الهام بخش ریاضیات کاربردی بوده است و تا قرن نوزدهم نفوذ عمیقی در ریاضیدانان به ویژه در زمینه آنالیز داشته است .

طی قرون بعد از میلاد به دلیل جنگ های داخلی، تسلط امپراطوری روم بر یونان، سوزاندن کتابخانه ها از جمله کتابخانه بزرگ اسکندریه و مهمتر از همه افتادن علوم در زندان خرافی کلیسا، به تدریج و به خصوص پس از تسلط اسلام بر تمدنهای بزرگ آن زمان در قرن هفتم، رسالت حفظ و انتشار علوم بر عهده ممالک اسلامی افتاد. به روایت برخی کتابهای تاریخی اولین کسی که به ترجمه آثار یونانی دست زد «ابن مقفع» دانشمند ایرانی قرن دوم هجری ( قرن نهم میلادی ) بود. وی اولین بار فن منطق را به عربی ترجمه کرد و مسلمانان را به این دانش مسلح کرد. پس از آن جریانی شکل گرفت که در تاریخ به نهضت ترجمه معروف است. در این جا نقش یک انجمن پنهانی به اسم «اخوان الصفا» که در قرن چهارم هجری شکل گرفت بسیار بارز است. نتیجه کار این انجمن که متشکل از علماء و دانشمندان اسلامی بود رساله هایی است که مشتمل بر 51 مقاله در زمینه های مختلف علوم طبیعی ، ریاضی، الهی و مسائل عقلی و غیره می باشد. از میان دانشمندانی که تاثیرات زیادی را روی نسل های بعدی در زمینه ریاضی گذاشتند می توان از خوارزمی، ماهانی، ابن قروه، کرجی، بوزجانی، خیام، ابن عزرا، کاشانی و خواجه نصیرالدین طوسی نام برد.
البته در این دوره که به دوره تاریک اندیشی غرب مشهور است و تا حدود سده چهارده میلادی ادامه داشته است، در امپراطوری روم شرقی (بیزانس) که به طور طبیعی بیشتر تحت تاثیر فرهنگ یونانی بود، علوم و از جمله ریاضیات به حرکت خود، به کندی، ادامه داد. در این میان می توان از «بوئتیوس» (ح 510 م) نام برد که معلومات ریاضی دانانی چون «اقلیدس»، «نیکوماخوس» و «ثاون» را در کتابی به نام دو مقاله در باب اصول حساب گرداوری کرد که در همه مدارس قرون وسطی تدریس می شد. برجسته ترین ریاضیدان قرون وسطی در غرب، «فیبوناتچی» (1202 م) بود که تا حدود زیادی تحت تاثیر کتاب «جبر و مقابله» اثر مهم ریاضیدان بزرگ ایرانی (قرن نهم میلادی )، یعنی «خوارزمی»، بوده است.
در کتاب «صورتبندی مدرنیته و پست مدرنیته»، قرون پس از دوره تاریک اندیشی غرب، به چهار دوره به صورت زیر تقسیم شده است:
1- دوره رنسانس یا نوزایی، از قرن چهاردهم؛
2- جنبش اصلاح دینی، در قرن شانزدهم؛
3- عصر روشنگری، از اواخر قرن هفدهم تا اوایل قرن هیجدهم؛
4- انقلاب صنعتی، از نیمه دوم قرن هیجدهم تا نیمه قرن نوزدهم؛
به نظر می رسد این تقسیم بندی در مورد تاریخ تحول ریاضیات در غرب نیز، با مختصر تفاوتی، صدق می کند.

جرقه های دوره نوزایی در ایتالیا زده شد. در این دوره در واقع علوم عهد یونان باستان و تمدن اسلامی ترجمه و بازیافت شد. شاید بتوان گفت این کار در زمینه ریاضیات در قرن سیزدهم با کارهای فبیوناتچی شروع شد. یه این ترتیب، دوره نوزایی در ریاضیات از قرن سیزدهم شروع شده است که با توجه به ماهیت ریاضی تا حدی طبیعی است. این نکته از این جهت تذکر داده شد تا توجه کنیم که تحولات در علوم گرچه به مقدار زیاد به تحولات اجتماعی وابسته است، اما بر آن منطبق نیست و گاه خود می تواند زمینه ساز تحول اجتماعی باشد.
در دوره اول تحول ریاضی در غرب که می توان گفت از قرن سیزدهم میلادی تا نیمه قرن شانزدهم ادامه دارد، اگر چه ریاضیات پیشرفت زیادی کرد اما خلاقیت و نوآوری چندانی در آن صورت نگرفت.

از نیمه دوم قرن شانزدهم تحت تأثیر گشایشی که از طریق اصلاح دینی و اجتماعی ( با پرچمداری مصلحینی چون «مارتین لوتر»، «توماس مونتسر»، «هولدریخ تسوینگلی»، «جان کالون» و دیگران ) در غرب صورت گرفت، شاهد کارهای خلاقانه در ریاضیات هستیم. می توان گفت که این جریان از «نپر» و ابداع لگاریتم شروع شد و با توجه به نیاز آن زمان به کارهای محاسباتی سنگین به شدت مورد اقبال قرار گرفت. سده های هفدهم و هیجدهم شاهد ریاضیدانان بزرگی با کارهای بزرگ در زمینه های مختلف است. «گالیله» و «کپلر» در زمینه مکانیک آسمان، «پاسکال» در زمینه هندسه تصویری و پایه گذاری نظریه احتمال (به همراه ریاضیدان بزرگ فرانسوی، یعنی «فرما» )، «دکارت» در زمینه ابداع هندسه تحلیلی ( ظاهراً «فرما» نیز همزمان با او به هندسه تحلیلی رسیده بود)، «فرما» در زمینه های مختلف ریاضی و به ویژه در زمینه نظریه اعداد و ایجاد زمینه برای پیشرفت جبر و آنالیز و بالاخره «کاوالیری»، «جان والیس» و «باروی» در بسترسازی مناسب برای کارهای اساسی که بعداً در قرن هیجدهم توسط «نیوتن» و «لایب نیتس» صورت گرفت. به این نامها بایستی نام ریاضی دان بزرگ هلندی قرن هفدهم یعنی «کریستین هویگنس» را هم اضافه کنیم که کارهایش باعث پیشرفتهای محسوسی در علم نجوم و احتمالات و اختراعات صنعتی از جمله اختراع ساعت پاندولی شد.

اوایل قرن هیجدهم نقطه عطفی در تاریخ ریاضیات است. در اوایل این قرن نیوتن و لایب نیتس به طور همزمان و با استفاده از کارهای کسانی چون کاوالیری، جان والیس و باروی که پیش از این انجام شده بود، حساب دیفرانسیل و انتگرال را ابداع کردند. در نیمه اول این قرن شاهد ریاضیدانان بزرگ دیگری نظیر برادران برنولی ( سه برادر ریاضیدان که در حل مسایل ریاضی خستگی ناپذیر بودند )، «تیلر»، «مکلورن» و دیگران هستیم.
متعاقب پیشرفتهای ریاضی و به تبع آن سایر علوم مرتبط با ریاضی و با توجه به نیاز زمان، اختراعاتی در زمینه های مختلف شروع شد و نطفه های انقلاب صنعتی در غرب در نیمه دوم قرن هیجدهم شکل گرفت. این انقلاب صنغتی به دنبال خود تغییراتی در دیدگاههای فلسفی و اجتماعی غرب گذاشت. اگر چه به روایت تاریخ، انقلاب صنعتی از انگلیس شروع شده بود ولی در فرانسه با انقلاب اجتماعی همراه شد و توانست تأثیرات شگرفی را در بینش جهان غرب بگذارد. ریاضیدانان این دوره تحت تأثیر همین بینش توانستند تابوهای ریاضی را در همه زمینه ها بشکنند. ابتدا به دنبال ابهاماتی که در طرح «بینهایت کوچکها» از طرف نیوتن و لایب نیتس در بحث حساب دیفرانسیل و انتگرال پیش آمده بود، مباحثات و مجادلات زیادی در این مورد صورت گرفت. در اثر تلاش ریاضیدانانی چون «اویلر»، «دالامبر»، «بولتسانو»، «وایراشتراوس»، «لاگرانژ»، «ریمان» و به خصوص «کوشی» برای اجتناب از این شبهات، از دل هندسه، آنالیز سر برآورد و به اوج خود رسید. از سوی دیگر نیز با تلاش ریاضیدانی چون «واندرموند»، «لاگرانژ»، «گاوس»، «آبل»، «گالوا»، «همیلتن» و دیگران از دل حساب و نظریه اعداد شاخه های مختلف جبر شکل گرفت. در این میان کارهای گاوس، آبل و به ویژه گالوا بسیار بدیع بود و کار همیلتن به جهت معرفی حلقه های تعویض ناپذیر، به دلیل ساختار شکنی، بسیار مؤثر بود.
جریان انقلابی دیگری که در این زمان شکل گرفت، شکستن تابوی هندسه اقلیدسی بود. به نقل از اسناد تاریخی اولین کسی که با طرد اصل پنجم اقلیدس به هندسه نااقلیدسی نزدیک شد «گاوس» ریاضیدان بزرگ آلمانی بود که بهر دلیل آن را انتشار نداد. کمی بعد هندسه نااقلیدسی به صورت مستقل توسط «یوهان بایایی» (1802-1860) ریاضی دان مجاری و «لباچفسکی» (1793- 1856) ریاضی دان روسی اعلام وجود کرد. چندی بعد «ریمان» با جرح و تعدیل دیگری در اصل پنجم اقلیدس، هندسه دیگری را که به هندسه بیضوی موسوم است، معرفی کرد.


تحقیق در مورد هندسه

هندسه هم مانند حساب، یکی از کهن ترین بخش های دانش ریاضیات استتاریخ پیدایش آن در ژرفای سده های گذشته است
دسته بندی ریاضی
بازدید ها 10
فرمت فایل doc
حجم فایل 9 کیلو بایت
تعداد صفحات فایل 13
تحقیق در مورد هندسه

فروشنده فایل

کد کاربری 1024
کاربر

تحقیق در مورد هندسه

مقدمه
هندسه هم مانند حساب، یکی از کهن ترین بخش های دانش ریاضیات است.تاریخ پیدایش آن در ژرفای سده های گذشته است.هندسه در دنیای کهن،بیشتر جنبه کاربردی داشته است و این دوران خود را، که طولانی ترین دوران تکامل آن است، در ایلام، بابل،مصر،چین و در واقع در همه سرزمین های گذرانده است و همه ملت ها در ارتباط بااندازه گیری، به ویژه اندازه گیری زمین های کشاورزی، در ساختن مفهوم های هندسی دخالت داشته اند.

مفهوم اصل،قضیه ودیدگاه اقلیدس:
«اصل» در هندسه، به حکمی گفته می شود که بدون اثبات پذیرفته شود؛ در واقع درستی آن با تجربه سده های متوالی تایید می شود.حکم هایی که به یاری اصل ها ثابت می شوند،« قضیه » نام گرفته اند. اثبات،عبارت از استدلالی است که به یاری آن و به یاری اصل ها، می توان قضیه را ثابت کرد.قضیه،ترجمه ای از واژه یونانی «ته ئورم» که به معنای «اندیشیدن» است.
اصل ها و قضیه ها را برای نخستین بار،دانشمندان یونانی وارد دانش کردند. ارشمیدس(سده سوم پیش از میلاد) در کتاب های خود،بارها از اصل وقضیه استفاده کرده است. تاسرانجام اقلیدس(سده سوم پیش از میلاد) در«مقدمات» خود در سیزده کتاب اصل هاو قضیه های هندسی را منظم کرده است.
«مقدمات اقلیدس» تنها کتابی است که در طول نزدیک دو هزار سال پس از او، هندسه را به دیگران آموخته است.حتی امروز هم، هندسه دبیرستانی بر اساس مقدمات اقلیدس است.
برخی از اصل ها را ،اقلیدس «پوستولا» (خواست)نامیده است. برای نمونه،نخستین پوسترلا در «مقدمات» اقلیدس، به این ترتیب تنظیم شده است: «دو نقطه را میتوان به وسیله خط راست به هم وصل کرد.»
به ظاهر، پوستولاهای اقلیدس،ویژه هندسه است. او اصل هایی را که عمومی ترند ودر دانش های دیگر هم به کار می روند «آکسیوم» می نامد. امروز همه اصل ها(آکسیوم ها وپوستولاها) را «آکسیوم» می نامند که در زبان فارسی، به «اصل موضوع» معروف اند.

• معمای اصل پنجم اقلیدس
در طول بیش از دو هزارسال، دانشمندان گمان می کردند که هندسه ای جز هندسه اقلیدسی وجود ندارد. براساس این تصور، ریاضیدانان تلاش می کردند پوستولاهای اقلیدس را از دیگر اصل های موضوع نتیجه بگیرند. تغییر یافته پوستولای پنجم اقلیدس به وسیله «پولی فر» چنین می گوید: از یک نقطه بیرون از یک خط راست، نمی توان دو خط راست موازی با خط راست مفروض رسم کرد.ولی همه تلاش ها برای اثبات این اصل موضوع ناکام ماند.
ریاضیدانان ایرانی از جمله فضل حاتم نیریزی وعمر خیام، در این راه کوشیدند؛ ولی نتیجه این شد که اصل موضوع دیگری را به جای اصل موضوع اقلیدس قرا دادند. خیام در کتاب خود که به این موضوع اختصاص دارد، چهارضلعی های دو قائمه متساوی الساقین را مطرح می کند. او از چهارضلعی هایی صحبت می کند که دو ضلع رو به رو با هم برابر وبر قاعده عمود باشند.بعد ابتدا ثابت می کند، دو زاویه دیگر این چهارضلعی باهم برابرند وبا جانشین کردن اصل دیگری به جای پوستولای پنجم اقلیدس،حاده یامنفرجه بدون دو زاویه دیگر را رد می کند. طرح خیام به وسیله نصیرطوسی به کشورهای اروپایی می رود. از جمله ساکری ریاضیدان ایتالیایی، با طرح همان چهارضلعی ها تلاش می کند اصل موضوع اقلیدس را ثابت کند؛ ولی به نتیجه ای نمی رسد.